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Abstract

In this paper a periodic parameter switching scheme is applied to the Hindmarsh-Rose neuronal system

to synthesize certain attractors. Results show numerically, via computer graphic simulations, that the

obtained synthesized attractor belongs to the class of all admissible attractors for the Hindmarsh-Rose

neuronal system and matches the averaged attractor obtained with the control parameter replaced with

the averaged switched parameter values. This feature allows us to imagine that living beings are able to

maintain vital behavior while the control parameter switches so that their dynamical behavior is suitable

for the given environment.
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1 Introduction

Based on the theory of dynamical systems, Hindmarsh and Rose proposed the phenomenological neuron
model, which may be seen either as a generalization of the Fitzhugh equations or as a simplification of the
physiologically realistic model proposed by Hodgkin and Huxley [1, 2]. The Hindmarsh-Rose (HR) model
of neuronal activity is aimed to study the spiking-bursting behavior of the membrane potential observed in
experiments of a cell in the brain of the pond snail [1]. The dynamics of a single HR neuron has been studied
well, and it is illustrated that it can exhibit complex dynamical behavior including periodic and chaotic
spiking (bursting) motion when certain control parameters of nervous cell models are varied [1, 2, 3].

It is well accepted that the HR neuron model is an alternative candidate for studying the dynamics of
neuronal systems since it has simpler mathematical forms than Chay’s and Hodgkin and Huxley’s neuron
models [4, 5]. Therefore, this model has been used to study different aspects of neuronal dynamics such as
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transitions between different firing regimes [6], relations between block structured dynamics and neuronal
coding [7], the effect of noise on neuronal signal transduction [8] and on synchronization [9], the collective
dynamics of neuronal networks [10] and the evolution of spiral waves in coupled Hindmarsh-Rose neurons
[11].

However, an important phenomenon in neuron activity is the transition between different firing patterns.
From the viewpoint of dynamical systems, it is crucial to investigate the transition mechanism of firing
patterns for understanding realistic neuronal activities. The local stability and the numerical asymptotic
analysis of the Hindmarsh-Rose model are used to investigate the firing evolution of a single Hindmarsh-Rose
neuron [12]. A simple one-dimensional map method has been applied to the HR neurons to convert irregular
spiking and chaotic bursting to regular beating and periodic bursting [13].

Recently, we developed a parameter switching method to synthesize attractors of a class of dynamical
systems, called hereafter attractors synthesis (AS) algorithm. This method in fact starts from a set of given
parameter values, and allows us, via periodic or random parameter-switching, to generate any of the set of all
possible attractors of a class of continuous time dynamical systems of integer order[14],[15], or of fractional
order [16], depending linearly on the control parameter. It has been applied successfully to several dynamical
systems such as Lorenz, Chen, Rössler, Lotka-Volterra, minimal networks, fractional Lü systems and so on.
Extending this subject, we will synthesize attractors of the HR neuronal model, which can exhibit burst
dynamics, via the AS method contributing to a better understanding of neuronal firing transition.

The paper is organized as follows: the HR model will be described in Sec. 2; the AS method will be
introduced in Sec. 3, and attractors will be synthesized in Sec. 4. Finally, the paper will end in Sec. 5 with
some comments and conclusions.

2 Description of Hindmarsh-Rose model

The dynamics of an isolated HR neuron is governed by the following set of differential equations [1]:

·

x1 = bx2
1 − ax3

1 + x2 − x3 + I,
·

x2 = c− dx2
1 − x2,

·

x3 = p[s(x1 − x1)− x3],

(1)

where x1 is the membrane potential, x2 is associated with the fast current, Na+, or K+ and x3 with the slow
current, for example, Ca2+. The parameters are [1]: a = 1, b = 3, c = 1, d = 5, s = 4, x1 = −1/2(1+

√

5) ≃
−1.6. I and p are the control parameters, and I is a slow parameter while p is a fast parameter. I mimics
the membrane input current for biological neurons; p controls the speed of variation of the slow variable.

To find the fixed points we have to solve numerically the following equations: x2 = −5x2
1+1, x3 = 4x1+

6.4, and x3
1 +2x2

1 +4x1 +2 = 0 which gives the single real solution x1 = −0.639, x2 = −1.041, x3 = 3.8442.

Therefore the system (1) has a single equilibrium point: X∗ = (−0.639,−1.041, 3.844)
T

Parameter p is the ratio of time scales between fast dynamics and slow dynamics. Therefore, it controls
the difference between the slow and the fast dynamics of HR neuron model corresponding to the difference
between fast fluxes of ions across the membrane and slow ones. Therefore, it is really interesting to investigate
the dynamics of the HR neuron as the parameter p is changed. However, with I as control parameter, the
underlying dynamical system does not belong to the class of systems where AS can be applied [see Section
3].

The bifurcation diagram of the first component x1 versus p is shown in Fig. 1a,b,c for I = 3.4, while
that for I = 3.5 in Fig. 1d. We are interested in the case I = 3.4 because this case represents interesting
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dynamics, where chaos appears in a narrow range of p with a width of about 3.5 × 10−3. Fig. 1a gives the
bifurcation diagram with respect to the control parameter p in the range [0.0001, 0.15]. It is shown that as
the parameter p is changed, the HR neuron firstly bifurcates from period-doubling to chaos, and then, it
is stopped via the inverse period-doubling. For a clear vision, the enlargement of Fig. 1a is shown in Fig.
1b, which further confirms the above observation. Further enlargement can clearly guide our assessment as
illustrated in Fig. 1c.

More details on the dynamics of the HR model can be found in [12]

3 Attractors synthesis algorithm

The AS algorithm can be applied to the following general class of continuous-time autonomous and dissipative
dynamical systems, modeled by the Initial Value Problem (IVP) [15]

S : ẋ = fp(x), x(0) = x0, (2)

where fp is an R
n-valued function with a bifurcation parameter p ∈ R, n ≥ 3, and has the expression

fp(x) =g(x) + pAx, (3)

g : Rn −→ R
n is a continuous-time nonlinear function, A is a real constant n × n matrix, x0 ∈ R

n, and
t ∈ [0, T ).

This class of dynamical systems contains the best-known systems such as Lorenz, Chen, Rössler, Lotka-
Volterra, minimal networks, fractional Lü systems and so on (see [14][15][16]).

In [15] it has been shown, via numerical analysis and computer graphic simulations, that the AS algorithm
allows the synthesis of any attractor of S by parameter switching following some designed rule.

The AS algorithm can explain what happens with a system when, intentionally or not, the parameter
value switches quickly through a set of values. Thus, when p is switched following some designed deterministic
[15] or random [14] rule, while the system evolves in time, an attractor belonging to the set of attractors is
generated (synthesized).

The AS algorithm can be useful in the cases where some desired control parameter value cannot be
directly accessed and we want to obtain the corresponding attractor.
Let us next suppose the following assumptions hold.
Assumption A.1. Throughout, the existence and uniqueness of solutions of the IVP (2)-(3) are assumed.

As known, the computer graphic simulations of the numerical integration results of (2)-(3) can give
excellent approximations to the orbits within the invariant sets [17]. Thus, the orbits which start near a
hyperbolic attractor will stay near and they will be shadowed by orbits within the attractor. This happens
because attractors arise as the limiting behavior of orbits. Therefore, the shadowing property of hyperbolic
sets [18] enables us to recover long time approximation properties of numerical orbits such as HR’s case.

The AS algorithm consists in using a time varying, or more precisely, a periodically switching parameter,
according to some design rule. It will be shown, empirically by various experiments, that a desired targeted
attractor can be duly obtained by the proposed switching scheme.

Remark 1 The algorithm is robust to some extent: the switching timing and switching parameter values
both allow flexibility. Therefore, they do not need to be very precisely determined.

Hereafter the following notations will be used
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Notation 1 Let us denote by A the set of all global attractors of S, including attractive stable fixed points,
limit cycles and chaotic (possibly strange) attractors; P ⊂R the ordered set of the corresponding admissible
values of p and PN = {p1, p2, . . . , pN} ⊂ P a finite ordered subset of P containing N different values p,
which determines the set of attractors AN = {Ap1

, Ap2
, . . . , ApN

} ⊂ A.

Assumptions

A.2. P is considered, as in most cases, to be composed of a single real interval and all the values of
PN = {p1, p2, . . . , pN} for which the system behaves stable and/or chaotic is assumed to be accessible.

A.3. S is dissipative i.e. ▽ · f < 0, where ▽ · f ≡
n
∑

i=1

∂f (x1, x2, . . . , xn) /∂xi (see e.g. [19]).

Due to the assumed dissipativity, A is non-empty1 and it follows naturally that for the considered class
of systems, a bijection may be defined between the sets P and A. Thus, giving any p ∈ P , a unique global
attractor is specified, and vice versa.

Remark 2 Because in this paper computer simulations are used as the major analytical tool, the ω-limit
set (actually, its approximation [20]) is considered after neglecting a sufficiently long period of transients.
Therefore, by attractors (background on the notion of attractor can be found in [21]) it is appropriate to
understand in this paper the ω-limit set obtained by a numerical method for ODEs with fixed step size h after
the transients were neglected.

Let PN = {p1, p2, . . . , pN}. The AS algorithm relies on the following deterministic time rule applied
repeatedly on I

[(m1h)p1, (m2h)p2, . . . , (mNh) pN ], (4)

where the weights mi are some positive integers. The algorithm acts as follow: in the first time subinterval
of length m1h, p will have the value p1 (i.e. the IVP(2)-(3) will be integrated m1 steps for p = p1), for the
next m2 integration steps, p = p2 and so on until the N -th time subinterval of length mNh where p = pN
and then the algorithm repeats. In order to simplify the notation in (4), for a fixed step size h, the scheme
(4) will be denoted next

[m1p1, m2p2, . . . ,mN pN ]. (5)

For example, the scheme [p3, 3p1, 2p2] represents the infinite sequence of p : p3, 3p1, 2p2, p3, 3p1, 2p2, . . . which
means that while the considered numerical method integrates (2)-(3), p switches in each mih time subin-
terval. In other words, the numerical method will integrate (2)-(3) one step with p = p3, then three times
with p = p1, then two steps with p = p2 and so on.

The AS algorithm for the scheme (5) is presented in Fig. 2

Notation 2 Let us denote the synthesized attractor obtained with AS algorithm, via (5), by A∗ and by Ap∗

the averaged attractor corresponding to

p∗ =

N
∑

k=1

pkmk

N
∑

k=1

mk

. (6)

1Attractor sets can exist only for dissipative systems because shrinking of the volume in phase space for conservative systems

is ruled out by Liouville theorem
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Next, the following notion is introduced

Definition 1 Two attractors are considered to be identical if their underlying ω-limit sets coincide in the
phase space, the identity being considered from a geometric point of view in the phase space, aided by computer
graphic analysis.

This identity in the case of chaotic attractors will be considered only asymptotically since they are fully
depicted only after an infinite time.

Proposition 1 The synthesized attractor A∗ and the averaged attractor Ap∗ are identical

Proof. Let us consider some subset PN . If we denote αk = mk/
N
∑

i=1

mi, it is easy to see that p∗ is a

convex combination p∗ =
N
∑

k=1

αkpk, since
N
∑

k=1

αk = 1. Therefore p∗ belongs within the interval (p1, . . . , pN ),

whatever the values pi are chosen. Also, taking into account the bijection between P and A, we are entitled
to consider that the same convex structure is preserved into A. Therefore, for whatever switched values of p
in some subset PN , A∗ will belong within the set AN considered to be ordered by the mentioned bijection
i.e. Ap∗ ∈ (Ap1

, ApN
). Next, aided by numerical analysis and via computer graphics, it can be showed that

A∗ is identical (in the sense defined above) to Ap∗ .Therefore A∗ ∈ (Ap1
, ApN

) .
Next, we can formulate the main property of the AS algorithm

Proposition 2 For whatever considered set PN , the AS algorithm generates an attractor A∗ which belongs
to (Ap1

, ApN
) .

Remark 3 The AS algorithm is useful especially when we want to obtain some attractor Ap even the un-
derlying value p cannot be accessible.

In this case A can be synthesized by choosing a corresponding set (p1, . . . , pN ) ∋ p but p /∈ PN =
{p1, . . . , pN}, and a corresponding scheme (5).

The initial conditions play an important role since for a specific value p ∈ P there is a single global
attractor but which could be composed by several local attractors (see e.g. [21],[22],[23],[24]). For example,
for the Lorenz system for the control parameter r = 2.5 there are three local attractors: the origin and two
symmetrical fixed points X1,2 (±2, ∓ 2, 1.5) while for r = 28 there is a single local attractor which is global
too, the known Lorenz strange attractor. To avoid these possible difficulties, all the computer simulations
for A∗ and Ap∗ for a particular case, start from the same initial conditions.

In order to see how the AS algorithm works, let us consider that we want to synthesize the attractor Ap.
Then we must choose N and the set PN such that p ∈ (p1, . . . , pN) ( p can be equal or not to one of the
elements pi, for i = 2, . . .N − 1). Next, choosing empirically the scheme (5), such that the right-hand side of
(6) gives p, the initial value problem is integrated and finally Ap is obtained.
To underline the identity between A∗ and Ap∗ histograms and Poincaré sections besides the phase plots were
drawn after the transients were neglected.

4 Synthesis of HR attractors

Real neurons often display high nonlinearity, which has been shown in many experiments and confirmed by
numerical simulation of many neuron models, including the HR and Chay neuron models[1, 4]. Chaos is a
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universal phenomenon in certain neurons, such as those in the human brain where, often, the information is
decoded and transduced by means of chaos. It is very important to study the chaos of neuron from different
aspects. Next, we will focus on the neuronal firing pattern when p is switched.
Firstly, it is easy to prove the following

Proposition 3 The HR system (1) with p considered as control parameter, belongs to the class of systems
modeled by the IVP (2)-(3).
Proof. Choosing the following substitution

y1 = x1 − x1

and replacing finally y1 with x1, (1) becomes

.
x1 = a1x

3
1 + b1x

2
1 + c1x1 + d1x2 + e1x3 + f1 + I, (7)

.
x2 = a2x

2
1 + b2x1 + c2x2 + d2,

.
x3 = p(sx1 − x3),

where

a1 = −a,

b1 = b− 3ax1,

c1 = x1 (2b− 3ax1) ,

d1 = 1,

e1 = −1,

f1 = −ax31 + bx2
1,

a2 = −d,

b2 = −2dx1,

c2 = −1,

d2 = dx2
1.

Thus, the right hand side of (7) can be written following (3) with

g(x) =





a1x
3
1 + b1x

2
1 + c1x1 + d1x2 + e1x3 + f1 + I

a2x
2
1 + b2x1 + c2x2 + d2

0





A =





0 0 0
0 0 0
s 0 −1



 and x =





x1

x2

x3



 .

6



Because, from a numerical point of view, the mathematical model (1) presents a more accessible form
than (7), next we will work with (1).

The HR system verifies the assumptions A1, A2 and also A3 for large parameters range taking into
account that ▽ · f = −3ax2

1 + 2bx1 − 1 − p. Therefore, one can apply the AS algorithm to the HR system
(1). For this purpose we considered the Standard Runge-Kutta numerical method for ODEs with the fixed
step size h = 0.005 and, as stated above, I = 3.4.

For the sake of the brevity, in what follows, only the most relevant cases are considered. Let us firstly
consider the case N = 2 and PN = {0.004, 0.01} (see Fig. 1b) with m1 = m2 = 1. Then, using the scheme
[1p1, 1p2] while integrating the initial value problem (1), finally, even the attractors A0.004 and A0.01 are
stable limit cycles, the obtained synthesized attractor A∗ is chaotic (Fig. 3a). As can be seen from Fig. 3a,
the synthesized attractor A∗ (blue) and the averaged attractor Ap∗ (red) for p∗ = (0.004 + 0.01)/2 = 0.007
given by (6) coincide. It can be seen that p∗ ∈ (p1, p2) (Fig. 1b) and also A∗ is situated between the
corresponding attractors Ap1

and Ap2
.

Next, if we use N = 10 values for p defined as follows: pi = 0.0002 + i × 0.0001 and mi = 1, for
i = 1, 2, . . . , 10, the synthesized attractor A∗ is a stable limit cycle which coincides with the averaged
attractor Ap∗ with p∗ = 0.00075 (Fig. 4).

An interesting case appears for N = 2 and PN = {0.0082, 0.008765} and m1 = m2 = 1, where p1, and
p2 are chosen in a very narrow periodic window (its width is about 1E − 4 , see Fig. 1c, Fig. 5b and Fig.
5c). The obtained attractor, A∗, is identical to Ap∗ for p∗ = 0.0084825 (Fig. 5 a). We found numerically
that the fixed point X∗ is unstable for p = p∗ since the three eigenvalues are: −6.266, 0.179 and 0.02 and,
as showed in Fig. 6, the Lyapunov spectrum has two negative exponents while the maximum one is positive
(approximately zero). All these lead us to consider that Ap∗ (and consequently A∗) is a stable limit cycle.
The apparent difference between the attractors in this case is due to the very small difference between p1
and p2.

5 Conclusions

In summary, we have investigated the synthesis of attractors of the HR neuronal system by means of the AS
method. It is shown that when we choose the slow parameter p as the control parameter, the HR neuronal
system belongs to a class of systems, where we can apply the proposed switching method. Consequently, we
concluded that every attractor can be synthesized by the proposed periodic parameter switching scheme in
the HR neuron model. It is accepted that neurons can code information by means of firing patterns, which
depends on the variation of key parameters of neuronal systems. Hence, the results presented in this paper
may be instructive in understanding the implications of realistic neuronal dynamics.

Acknowledgements This work was supported by the National Science Foundation of China (Fund
Nos. 10972001, 10702023 and 10832006).
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Figure 1: (a) Bifurcation diagram: x1 vs p with I = 3.4. (b) Detail of Fig. 1a. (c) Consecutive detail of Fig.
1b. (d) Bifurcation diagram: x1 vs p with I = 3.5.

10



t = 0
repeat

for k = 1 to N do
p = pk
for i = 1 to mk do

integrate (2)− (3)
t = t+ h

end
end

until t ≥ T

Figure 2: Pseudocode of AS algorithm.

Figure 3: AS algorithm with scheme [1p1, 1p2] with p1 = 0.004 and p2 = 0.01; a) The synthesized and
averaged attractors A∗ and Ap∗ respectively, superimposed for p∗ = 0.007 ; b) Attractor A0.004 ; c) Attractor
A0.01.
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Figure 4: AS algorithm for N = 10, pi = 0.0002 + i × 0.0001 and mi = 1, for i = 1, 2, . . . , 10; A∗ and
Ap∗ , with p∗ = 0.00075, are superimposed.
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Figure 5: AS algorithm for N = 2 and PN = {0.0082, 0.008765} and m1 = m2 = 1; a) A∗ and Ap∗ , with
p∗ = 0.0084825 , superimposed; b) A0.0082; c) A0.008765; d) Superimposed histograms of A∗ and Ap∗ ; e)
Superimposed Poincaré sections of A∗ and Ap∗ for x1 = 1.2.13



Figure 6: Temporal evolution of Lyapunov exponents for p = 0.0084825.
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